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A B S T R A C T   

Adversity exposure is a risk factor for psychopathology, which most frequently onsets during adolescence, and 
prior research has demonstrated that alterations in cortico-limbic connectivity may account in part for this as-
sociation. In a sample of youth from the Adolescent Brain Cognitive Development (ABCD) Study (N = 4006), we 
tested a longitudinal structural equation model to examine the indirect effect of adversity exposure (negative life 
events) on later psychopathology via changes in cortico-limbic resting-state functional connectivity (rsFC). We 
also examined the potential protective effects of parental acceptance. Generally, cortico-limbic connectivity 
became more strongly negative between baseline and year 2 follow-up, suggesting that stronger negative cor-
relations within these cortico-limbic networks may reflect a more mature phenotype. Exposure to a greater 
number of negative life events was associated with stronger negative cortico-limbic rsFC which, in turn, was 
associated with lower internalizing (but not externalizing) symptoms. The indirect effect of negative life events 
on internalizing symptoms via cortico-limbic rsFC was significant. Parental acceptance did not moderate the 
association between negative life events and rsFC. Our findings highlight how stressful childhood experiences 
may accelerate neurobiological maturation in specific cortico-limbic connections, potentially reflecting an 
adaptive process that protects against internalizing problems in the context of adversity.   

1. Introduction 

Exposure to adversity during childhood and adolescence is highly 
prevalent, with more than half of individuals experiencing at least one 
adverse event prior to age 18 (McLaughlin, 2016; Merrick et al., 2018). 
Experiences such as maltreatment, parental separation, family financial 
stress, and parental mental illness can disrupt developmental processes 
and have consequences across multiple domains of development, 
shaping brain structure and function (Tomalski and Johnson, 2010) as 
well as mental health outcomes (Felitti et al., 1998; Kessler et al., 2010). 
Indeed, adversity during childhood accounts for approximately 30% of 
all mental illness (Green et al., 2010). Accumulating evidence suggests 
that the association between adversity and mental health outcomes may 
be explained by alterations in the developing brain (McLaughlin et al., 
2016; McLaughlin et al., 2020; Rakesh et al., 2021; VanTieghem and 
Tottenham, 2018). However, many youth demonstrate trajectories 
associated with resilience, and there is a critical need for the identifi-
cation of precise protective factors and adaptations that mitigate the 
effects of adversity. Adolescence is a particularly important 

developmental period during which to examine these associations due to 
the frequent onset of psychopathology (Kessler et al., 2005; Lee et al., 
2014) along with ongoing maturation in stress-sensitive regions of the 
brain (Casey et al., 2016; Gee and Casey, 2015; Tottenham and Sher-
idan, 2010). 

The impact of adversity on mental health outcomes has been well- 
documented (e.g., Green et al., 2010; McLaughlin et al., 2010); how-
ever, it remains unclear what neurobiological mechanisms may underlie 
this association. Accumulating empirical evidence suggests that aber-
rant functional connectivity may be a key mechanism, given that the 
development of neural circuitry can be altered under conditions of stress 
(Gee et al., 2013a; Herzberg and Gunnar, 2020; Sripada et al., 2014). In 
particular, connections between the prefrontal cortex and subcortical, 
limbic regions are highly sensitive to environmental inputs, in part due 
to dense innervation with glucocorticoid receptors and the develop-
mental timing of circuit maturation (Lupien et al., 2009). Both human 
and animal studies have demonstrated that chronic stress is associated 
with functional alterations in amygdala-prefrontal-hippocampal cir-
cuitry (Eiland et al., 2012; Weems et al., 2019). For example, greater 
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severity of early life stress has been linked to more negative 
amygdala-dorsolateral prefrontal cortex (dlPFC) resting-state functional 
connectivity (rsFC) (Herringa et al., 2013; Kaiser et al., 2018). These 
connections between top-down executive networks and subcortical, af-
fective systems underlie cognitive and emotional processing and support 
successful regulation of behavior and affective states. For example, the 
cingulo-opercular (CO) network, which includes the dorsal anterior 
cortex (dACC), insula, and anterior prefrontal cortex, supports cognitive 
control (Dosenbach et al., 2007), and projections between this network 
and subcortical regions such as the hippocampus and amygdala 
comprise key emotion circuits that may underlie psychiatric disorders 
(Sylvester et al., 2020). Thus, development of CO-hippocampus and 
CO-amygdala rsFC may be a potential mechanism linking youth adver-
sity and levels of psychopathology. 

Cortico-limbic circuits demonstrate age-related changes (Gabard--
Durnam et al., 2014; Gee et al., 2013b; Silvers et al., 2017; Wu et al., 
2016), with acute development and reorganization during adolescence 
(Casey et al., 2019; Stevens, 2016). Theoretical and empirical work 
across species suggests that exposure to adversity may accelerate these 
patterns of maturation (Callaghan and Tottenham, 2016; Gee et al., 
2013a; Herzberg et al., 2021; Miller et al., 2020; Silvers et al., 2016; 
Thijssen et al., 2017). For example, stressful family environments have 
been linked to accelerated pubertal maturation, which in turn was 
associated with altered CO-amygdala rsFC, among youth in the 
Adolescent Brain Cognitive Development Study℠ (ABCD Study®; 
Thijssen et al., 2020a, 2020b). In this way, accelerated maturation may 
reflect adaptation to stressful environments and promote short-term 
resilience to mental health problems. At the same time, other work 
has suggested that adversity exposure is associated with delays or 
weakening connectivity in certain circuits, and in turn, increased risk for 
psychopathology (e.g., Rakesh et al., 2021). Much of this work has relied 
on cross-sectional designs (e.g., Gee et al., 2013a; Herzberg et al., 2021; 
Silvers et al., 2016; Thijssen et al., 2020a, 2020b). Additional research, 
especially with longitudinal neuroimaging, is necessary to disentangle 
the directions of these associations across development. Similarly, the 
literature is relatively mixed regarding the valence of changes in rsFC 
across development. Both strengthening and weakening of functional 
connectivity have been observed (Fair et al., 2010; Stevens, 2016) 
depending on the specific circuit under consideration, imaging modal-
ity, and the age of participants. For this reason, it can be difficult to 
identify deviations from expected patterns of maturation (e.g., acceler-
ation versus delay) in a given circuit. Further research with repeated 
measures of rsFC is necessary to identify typical directionality of 
changes in connectivity, as well as deviations from typical trajectories. 

Functional alterations in neural circuitry may have downstream 
consequences for youth psychosocial adjustment. Indeed, the same cir-
cuits that are highly sensitive to stress are also implicated in a host of 
psychopathology outcomes in youth. For example, aberrant patterns of 
cortico-limbic rsFC may underlie both internalizing (Rakesh et al., 2021; 
VanTieghem and Tottenham, 2018) and externalizing (Rubia, 2011; 
Silveira et al., 2021; Thijssen et al., 2020a, 2020b) symptomatology. 
More specifically, connectivity between the CO network and subcortical 
regions has been linked to psychopathology among youth in the ABCD 
Study. In cross-sectional analyses, Lees et al. (2021) found that hyper-
connectivity between the CO network and the putamen was associated 
with heightened internalizing symptomatology among 9–10 year-olds. 
However, research has not yet examined CO connectivity with the 
stress-sensitive limbic system, as well as how developmental changes 
over time in functional connections may contribute to psychopathology 
outcomes. 

Not all youth who are exposed to adversity demonstrate alterations 
in neurobiology. Indeed, many children and adolescents demonstrate 
resilient trajectories, and there is a critical need for the identification of 
precise protective factors that mitigate the effects of adversity on neu-
rodevelopment, which may ultimately disrupt pathways to psychopa-
thology. In particular, features of the home and family environment may 

confer resilience to stressors. Prior research points to the benefits of 
parental support and caregiving behaviors in the development of higher- 
order cognitive processes and emotion regulation (Deater-Deckard, 
2014; Morris et al., 2017). Parenting that is characterized by high 
sensitivity, warmth, and emotional support may offset the potentially 
negative consequences of adversity exposure (Whittle et al., 2017). For 
example, initial evidence indicates that supportive parenting can buffer 
against the effects of adolescent poverty on rsFC in networks involved in 
emotion regulation and executive control (Brody et al., 2019). 

Taken together, prior research demonstrates that adversity is asso-
ciated with individual differences in cortico-limbic circuitry that may 
underlie internalizing and externalizing symptomatology. However, 
only a few studies have integrated measures of adversity, functional 
connectivity, and psychopathology in order to formally investigate po-
tential mediating effects (Barch et al., 2018; Callaghan et al., 2017; 
Rakesh et al., 2021; Silveira et al., 2021). As one example, Rakesh et al. 
(2021) found that longitudinal increases in between-network connec-
tivity (e.g., between the default mode network, frontoparietal network, 
dorsal attention network, and salience network) mediated the associa-
tion between maltreatment history and adolescent depressive symp-
toms. This type of prospective, longitudinal design and repeated 
measures of resting-state functional connectivity is rare, but critical in 
order to appropriately delineate the neurobiological and clinical 
sequelae of adversity. The ABCD Study (Casey et al., 2018) is uniquely 
positioned to elucidate these developmental processes and address 
limitations of prior research (Karcher and Barch, 2021). Specifically, the 
longitudinal design of this multi-site study, repeated neuroimaging 
measures, and unprecedented sample size offer novel opportunities to 
advance our understanding of risk and resilience in neurodevelopment 
and mental health outcomes. To this end, we utilized data from the 
ABCD Study at baseline, year 1 follow-up, and year 2 follow-up in order 
to test whether adversity was associated with later psychopathology via 
changes in cortico-limbic connectivity. Consistent with the stress ac-
celeration hypothesis, we hypothesized that greater stress exposure 
would be associated with more mature patterns of rsFC between the CO 
network and the amygdala and hippocampus, which in turn would be 
associated with lower internalizing and externalizing symptomatology. 
Furthermore, we expected that parental acceptance would moderate the 
association between adversity and cortico-limbic rsFC such that the ef-
fect of adversity would be weaker for adolescents with greater parental 
acceptance. 

2. Method 

2.1. Participants 

Data were drawn from the Adolescent Brain Cognitive Development 
(ABCD) Study, an ongoing longitudinal study of 11,878 children across 
21 study sites in the United States (Casey et al., 2018). We used data 
from the 3.0 release (DOI:10.15154/1519007) which includes baseline 
data, year 1 data, and approximately half of the anticipated year 2 data 
(the year 2 follow-up data collection is actively underway as of this 
writing, and thus was not available for analysis). Participants were 
excluded if i) their year 2 follow-up data were not yet released, ii) they 
did not have resting-state functional magnetic resonance imaging 
(rsfMRI) data, iii) their rsfMRI data were recommended for exclusion by 
the ABCD analytic core (detailed in ABCD 3.0 release notes), or iv) they 
had a history of brain injury, epilepsy, or autism spectrum disorder. 
These criteria are detailed in Fig. 1 and resulted in a final sample of N =
4006. Participants in the final sample (51% male) were 9–10 years old at 
baseline, 10–11 years old at year 1 follow-up, and 11–12 years old at 
year 2 follow-up. Median household income fell between $75,000 - $99, 
000. Participants identified as White (58%), Black (11%), Hispanic 
(20%), Asian (2%), or another race (10%). There were small but sig-
nificant differences between participants who were included versus 
excluded, such that those who were included were more likely to be 
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White (χ2 = 89.07, p < .001), female (χ2 = 4.54, p = .03), have higher 
income (t10287.85 = − 6.38, p < .001), have higher parent education 
(t10854.20 = − 5.79, p < .001), and report fewer negative life events 
(t10462.60 = 4.14, p < .001). All participants provided informed consent 
or assent (see Clark et al., 2018 for ethics and oversight in the ABCD 
Study). The participant IDs included in these analyses, as well as further 
details on the measures used, can be found in this project’s NDA study 
(DOI 10.15154/1522544). 

2.2. Measures 

2.2.1. Negative life events 
At the year 1 follow-up, children completed the Life Events Scale 

(Grant et al., 2004; Hoffman et al., 2019; Tiet et al., 1998), a 26-item 
measure that describes a variety of experiences. Children are asked to 
report whether or not they have ever experienced a given event, and if 
so, to report if the event was “mostly good” or “mostly bad” for them. 
Example items include, “Someone in family died”, “Was a victim of 
crime/violence/assault”, and “Family member had a mental or 
emotional problem”. We used a sum score of the total number of lifetime 
events that children endorsed as bad (negative), with higher scores 
reflecting greater exposure to negative life events. 

2.2.2. Parent acceptance 
At the year 1 follow-up, children also completed the Children’s 

Report of Parental Behavior Inventory (CRPBI; Schaefer, 1965). The 
parental acceptance subscale includes 5 items that are rated on a 3-point 
Likert-type scale ranging from “0 = Not like him/her” to “3 = A lot like 
him/her”. Example items include, “My parent is able to make me feel 
better when I am upset”, “My parent is easy to talk to”, and “My parent 
believes in showing his/her love for me”. Children completed the CRPBI 
for the parent/caregiver that participated in the study with them as well 
as their secondary parent/caregiver (if applicable). The CRPBI demon-
strated good reliability in the current sample for both primary caregiver 
(α = 0.69) and secondary caregiver (α = 0.75) reports. Scores were 
averaged between primary and secondary caregivers in order to create 
an overall parental acceptance variable, with higher scores reflecting 
greater parental acceptance. 

2.2.3. Psychopathology 
Parents reported on their child’s psychopathology symptoms using 

the Child Behavior Checklist (CBCL; Achenbach and Rescorla, 2001). 
Symptoms were rated on a 3-point Likert-type scale ranging from 
“0 = Never” to “2 = Often”. We used T-scores from the internalizing and 
externalizing symptom subscales to evaluate child psychopathology at 

year 2 follow-up. 

2.2.4. Resting-state cortico-limbic functional connectivity 
In the present study, we used rsfMRI data from baseline and the year 

2 follow-up. We used indices of functional connectivity from the ABCD 
Study’s tabulated data, which were pre-processed and analyzed by the 
consortium’s data analytic core (Hagler et al., 2019) using a seed-based 
correlational approach (Van Dijk et al., 2010). During pre-processing, 
T1-weighted images were corrected for gradient non-linearity distor-
tions (Jovicich et al., 2006). Head motion was corrected by registering 
each frame to the first using AFNI’s 3dvolreg (Cox, 1996) and B0 dis-
tortions were corrected using the reversing gradient method (Holland 
et al., 2010). Mutual information was used to register T2-weighted im-
ages to T1-weighted structural images. Initial frames were discarded to 
ensure equilibration of the T1 signal. Frames with displacement 
> 0.30 mm were excluded from the regression (Power et al., 2014). 

Pre-processed time courses were sampled onto the cortical surface 
for each participant. Average cortical time courses were calculated using 
the Gordon functional parcellation based on resting-state functional 
connectivity patterns (Gordon et al., 2016) and subcortical time-courses 
were also calculated (Fischl et al., 2002). Average correlations between 
the CO network and subcortical gray matter ROIs were calculated by 
averaging the correlations between each ROI within the CO network and 
the given subcortical ROI (e.g., left amygdala). Correlation values were 
Fisher Z-transformed to provide summary measures of connectivity 
strength (Van Dijk et al., 2010). Given prior work demonstrating that 
regions in the CO network, amygdala, and hippocampus are both 
stress-sensitive (Huang et al., 2021; Lupien et al., 2009) and changing 
across development (Dosenbach et al., 2010; Gee et al., 2013b; Marek 
et al., 2015), we specifically focused our analyses on CO network con-
nectivity with the hippocampus and amygdala (see Fig. 2b for subcor-
tical segmentations). 

3. Analytic plan 

First, in order to identify patterns of change in cortico-limbic con-
nectivity, we used paired samples t-tests to evaluate mean differences in 
connectivity between baseline and year 2 follow-up. Primary hypotheses 
were tested using Structural Equation Modeling (SEM) in Mplus Version 
8.3 (Muthén and Muthén, 1998). Longitudinal mediation models were 
estimated with MODEL INDIRECT to test the indirect effect of negative 
life events on psychopathology via cortico-limbic connectivity. We also 
tested the interaction between negative life events and parental accep-
tance (mean-centered) on cortico-limbic connectivity. Four total models 
were estimated in order to test the mediating effect of CO network 

Fig. 1. Inclusion and exclusion criteria for the present study’s analytic sample.  

A.E. Brieant et al.                                                                                                                                                                                                                               



Developmental Cognitive Neuroscience 52 (2021) 101022

4

connectivity with the left and right amygdala and left and right hippo-
campus. All models controlled for the effects of sex and age.1 We also 
included baseline cortico-limbic connectivity as a predictor in the 
model, regressing connectivity (at year 2 follow-up) on itself at a prior 
occasion (baseline). In doing so, the outcome is residualized such that 
any variability accounted for by baseline connectivity is regressed out, 
leaving only the variance that is unexplained by baseline and can thus be 
understood as variability likely due to developmental change (Cas-
tro-Schilo and Grimm, 2018). To account for the complex sampling 
structure in the ABCD Study, we specified stratification by study site and 
clustering of siblings within families (using TYPE = COMPLEX) in all 
models. RMSEA values of less than .05 were considered a close fit while 
values less than .08 were considered a reasonable fit (Browne and 
Cudeck, 1993). CFI values of greater than .90 were considered an 
acceptable fit while values greater than .95 were considered an excellent 
fit (Bentler, 1990). Full information maximum likelihood (FIML) esti-
mation was used to handle missing data on study variables (after 
applying exclusion criteria; see Table 1 for Ns for each variable). FIML 
uses maximum likelihood estimation based on all available data, and is 
superior to alternative missing data methods such as listwise deletion or 
imputation (Enders and Bandalos, 2001). 

4. Results 

Descriptive statistics and correlations for all study variables are 
presented in Table 1. All variables were normally distributed with levels 
of skewness less than 3 and kurtosis less than 10 (Kline, 2011). 

4.1. Changes in cortico-limbic connectivity 

First, we examined changes in cortico-limbic rsFC between the 
baseline scan and the year 2 follow-up. Results indicated that cortico- 
limbic rsFC became more strongly negative between baseline and year 
2 follow-up for CO-left hippocampus (t4005 = 6.67, p < .001) and CO- 
right hippocampus (t3991 = 7.10, p < .001) connectivity. CO-right 
amygdala rsFC was also negative in valence, but did not change 

significantly over time (t4005 = 0.28, p = .78). CO-left amygdala rsFC 
was positively valenced and became weaker between time points (t4005 
= 6.31, p < .001). These results are illustrated in Fig. 2a. 

4.2. Cingulo-opercular network—Amygdala connectivity 

4.2.1. CO-left amygdala connectivity 
The path model with CO-left amygdala connectivity as a mediator 

(Fig. 3a) demonstrated acceptable model fit (χ2 = 26.34, df = 12, 
p = .01, RMSEA =0.02, CFI =0.99). All model parameters, with effect 
sizes, are presented in Table 2. More negative life events predicted 
greater internalizing symptomatology and externalizing symptom-
atology. Negative life events were also associated with changes in CO- 
left amygdala rsFC. Specifically, more negative life events were associ-
ated with weaker positive (i.e., more mature) functional connectivity, 
which in turn was associated with lower internalizing but not exter-
nalizing symptomatology. The indirect effect of negative life events on 
later psychopathology via CO-left amygdala rsFC was significant 
(β = − 0.003, SE = 0.001, p = .03). There was not a significant main 
effect of parental acceptance on changes in CO-left amygdala rsFC, or a 
significant interaction between parental acceptance and negative life 
events. However, parental acceptance was associated with both inter-
nalizing and externalizing symptomatology, such that higher parental 
acceptance at year 1 was associated with lower symptomatology at year 
2. 

4.2.2. CO-right amygdala connectivity 
The path model with CO-right amygdala connectivity as a mediator 

(Fig. 3b) demonstrated acceptable model fit (χ2 = 14.84, df = 12, 
p = .02, RMSEA =0.02, CFI = 1.00). All model parameters, with effect 
sizes, are presented in Table 2. Negative life events were associated with 
changes in CO-right amygdala rsFC, such that more negative life events 
were associated with stronger negative (i.e., more mature) functional 
connectivity, which in turn was associated with lower internalizing, but 
not externalizing, symptomatology. The indirect effect of negative life 
events on later psychopathology via CO-right amygdala rsFC was sig-
nificant (β = − 0.003, SE = 0.001, p = .02). There was not a significant 
main effect of parental acceptance on changes in CO-right amygdala 
rsFC or a significant interaction between parental acceptance and 
negative life events. 

Fig. 2. A) Means and standard errors of resting-state functional connectivity at baseline and year 2 follow-up. CO = Cingulo-Opercular. B) Bilateral amygdala (red) 
and hippocampus (blue) segmentations. 

1 We explored models that also controlled for the effect of total household 
income on connectivity and psychopathology; results were highly consistent, 
and all significant effects held even when accounting for income. These model 
estimates are included in the Supplementary Material. 
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Table 1 
Correlation coefficients and descriptive statistics for study variables.  

Variable 1 2 3 4 5 6 7 8 9 10 11 M (SD) Min-Max N 

1. Negative life events            2.30 (2.22) 0.00–20.00 3942 
2. Parental acceptance -0.14**           2.79 (0.25) 1.20–3.00 3938 
3. CO-left amygdala 

connectivity (baseline) 
-0.07** .05**          0.05 (0.14) -0.91-0.97 4006 

4. CO-right amygdala 
connectivity (baseline) 

-0.06** .03 .54**         -0.04 (0.18) -1.52–1.15 4006 

5. CO-left hippocampus 
connectivity (baseline) 

.00 -0.03 .01 -0.01        -0.01 (0.15) -0.93–1.20 4006 

6. CO-right hippocampus 
connectivity (baseline) 

-0.05** .04* .43** .32** .01       -0.02 (0.13) -0.83-0.77 4002 

7. CO-left amygdala 
connectivity (follow-up) 

-.09** .01 .22** .13** .02 .20**      0.04 (0.13) -0.67-0.69 4006 

8. CO-right amygdala 
connectivity (follow-up) 

-.07** .02 .14** .13** .01 .14** .63**     -0.04 (0.16) -1.28-0.89 4006 

9. CO-left hippocampus 
connectivity (follow-up) 

-.001 -0.02 .06** .02 .09** .03 .01 .05**    -0.03 (0.13) -1.07-0.74 4006 

10. CO-right hippocampus 
connectivity (follow-up) 

-.07** .02 .16** .11** .04* .22** .56** .44** .07**   -0.04 (0.13) -0.89-0.85 3996 

11. Internalizing 
symptomatology 

.09** -.09** .03 .03 .01 .02 .03* .05** .01 .05**  47.48 (10.35) 33.00–84.00 4005 

12. Externalizing 
symptomatology 

.17** -.16** -.02 -0.03 .02 -0.03 -0.03 -0.01 -0.01 -0.02 .56** 44.18 (9.50) 33.00–82.00 4005 

Note. CO = Cingulo-Opercular network. N = number of participants with data for each variable. All participants in the sub-sample (N = 4006) were included in final 
analyses and missing data were handled with Full Information Maximum Likelihood (FIML). 

* p < .05. 
** p < .01. 

Fig. 3. Standardized estimates for the associations between negative life events, cingulo-opercular (CO) network-amygdala connectivity, and psychopathology. A) 
Model with CO-left amygdala connectivity, B) Model with CO-right amygdala connectivity. All models controlled for the effects of age, sex, and baseline CO- 
amygdala connectivity, and included main and interaction effects of parental acceptance on connectivity (not pictured for clarity). Non-significant paths illus-
trated by dashed lines. * p < .05, ** p < .01, *** p < .001. 
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4.3. Cingulo-opercular network—Hippocampus connectivity 

4.3.1. CO-left hippocampus connectivity 
The path model with CO-left hippocampus rsFC as a mediator 

(Fig. 4a) demonstrated acceptable model fit (χ2 = 10.66, df = 12, 
p = .10, RMSEA =0.01, CFI = 1.00). All model parameters, with effect 
sizes, are presented in Table 2. Negative life events were not associated 
with differences in CO-left hippocampus rsFC and CO-left hippocampus 
rsFC was not associated with internalizing or externalizing symptom-
atology. There was not a significant main effect of parental acceptance 
on changes in CO-left hippocampus rsFC or a significant interaction 
between parental acceptance and negative life events. 

4.3.2. CO-right hippocampus connectivity 
The path model with CO-right hippocampus rsFC as a mediator 

(Fig. 4b) demonstrated acceptable model fit (χ2 = 18.79, df = 12, 
p = .001, RMSEA =0.02, CFI =0.99). All model parameters, with effect 
sizes, are presented in Table 2. Negative life events were associated with 
differences in CO-right hippocampus rsFC. Specifically, more negative 
life events were associated with stronger negative (i.e., more mature) 
functional connectivity, which in turn was associated with lower inter-
nalizing, but not externalizing, symptomatology. The indirect effect of 
negative life events on later psychopathology via CO-right hippocampus 
rsFC was significant (β = − 0.004, SE = 0.001, p = .01). There was not a 
significant main effect of parental acceptance on changes in CO-right 
hippocampus rsFC or a significant interaction between parental 

acceptance and negative life events. 

4.4. Sensitivity analysis 

In order to evaluate whether outliers contributed to bias in model 
estimates, we conducted a sensitivity analysis excluding participants 
with values greater than 3.29 SD from the mean (Tabachnick and Fidell, 
2001) on any model variables. After applying this exclusion, the sample 
included 3348 participants. The results were highly consistent with re-
sults that included all participants, with only very small changes in 
parameter estimates across all models. 

5. Discussion 

The purpose of the present study was to test the indirect effect of 
adversity on later psychopathology via changes in cortico-limbic 
resting-state functional connectivity, as well as to explore the protec-
tive role of parental acceptance. Leveraging data from the ABCD Study, 
we found that more negative life events were significantly associated 
with longitudinal changes in cortico-limbic functional connectivity. In 
turn, changes in cortico-limbic rsFC were associated with lower inter-
nalizing, but not externalizing, symptoms. The indirect effect of negative 
life events on internalizing symptoms via cortico-limbic rsFC was sig-
nificant, suggesting that adaptations in cortico-limbic connectivity may 
explain lower symptomatology among youth with greater stress expo-
sure. We did not find evidence for protective effects of parental 

Table 2 
Mediation Model Parameter Estimates.  

Note. CO = Cingulo-Opercular network; rsFC = resting-state functional connectivity. Indirect effect = the effect of negative life events on 
internalizing symptomatology via cortico-limbic connectivity. 
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acceptance in these specific associations. 
Results indicated that higher levels of adversity were associated with 

more mature patterns of functional connectivity between the CO 
network and left and right amygdala and right hippocampus. It is 
possible that these findings reflect stress acceleration effects (rather than 
developmental delays) and adaptation to environments laden with 
stressful experiences. That is, under conditions of stress, more rapid 
development may benefit children and adolescents by prematurely 
activating neural circuitry that supports affective processing and regu-
lation (Callaghan and Tottenham, 2016). Thus, adolescents in this 
sample who had experienced more negative life events may have 
adapted to more stressful contexts via accelerated maturation in 
CO-amygdala-hippocampal connections. Consistent with this finding, a 
recent investigation with ABCD data found that accelerated pubertal 
maturation mediated the association between stressful family environ-
ments and CO network-amygdala rsFC (Thijssen et al., 2020a, 2020b). 
The current longitudinal findings also extend prior cross-sectional evi-
dence of stress acceleration in cortico-limbic circuitry (Gee et al., 2013a; 
Herzberg et al., 2021; Miller et al., 2020; Silvers et al., 2016; Thijssen 
et al., 2017). 

Our findings further indicated that more mature functional connec-
tivity was associated with lower levels of internalizing symptomatology, 
corroborating the idea that these adaptations may be beneficial for 
psychosocial adjustment. That is, within the context of increased risk for 
psychopathology that accompanies early adversity, acceleration in 
cortico-limbic circuitry was associated with lower internalizing symp-
toms. One possibility is that stress-induced acceleration may be bene-
ficial in the short term in order to promote the emotion regulation skills 
necessary to navigate stressful environments and mitigate psychopa-
thology symptoms. However, we expect that in the long-term, adoles-
cents with greater stress exposure will ultimately demonstrate higher 
internalizing symptomatology. The trade-off of early adaptation could 
be a shortened period of developmental plasticity, which may increase 
vulnerability to stress-related psychopathology later in development 
(Callaghan and Tottenham, 2016). As future releases of ABCD follow-up 

data become available, it will be possible to formally test this hypoth-
esis. Finally, the indirect effects we observed were specific to internal-
izing, rather than externalizing, symptomatology. Though prior work in 
this area has overwhelmingly focused on disorders such as depression 
and anxiety, it is also important to consider specificity of neurobiolog-
ical mechanisms that lead to different types of psychopathology. It is 
possible that distinct networks (e.g., fronto-striatal, inferior frontal 
gyrus) more strongly relate to externalizing symptomatology (Barch 
et al., 2018; Rubia, 2011), and this is an important line of inquiry for 
future work. 

More broadly, our results are generally consistent with work sug-
gesting that alterations in neural circuitry related to emotion regulation 
may underlie the association between adversity exposure and youth 
mental health (McLaughlin et al., 2019; VanTieghem and Tottenham, 
2018). In a recent longitudinal study, Rakesh et al. (2021) found that 
greater maltreatment severity was associated with widespread changes 
in functional connectivity across several major functional networks be-
tween age 16 and age 19. In turn, changes in connectivity were associ-
ated with higher depressive symptoms. Further evidence suggests that 
ventral-striatal-mPFC connectivity significantly mediates the associa-
tion between early institutionalization and adolescent social problems 
(Fareri et al., 2017). Our findings add to a growing literature illustrating 
the mediating effect of resting-state networks in the association between 
adversity and adolescent adjustment. Specifically, we found both a 
direct effect of adversity on psychopathology, as well as an indirect ef-
fect via changes in cortico-limbic connectivity, suggesting that connec-
tivity partially mediated this association. This aligns with prior work 
showing that a more mature pattern of amygdala-mPFC connectivity 
partially mitigated the effect of parental deprivation on anxiety (Gee 
et al., 2013a). Additional research linking early adversity with mental 
health via alterations in functional connectivity highlights important 
variability in these associations. For example, whereas increasing (i.e., 
more strongly negative) cortico-limbic connectivity was associated with 
lower internalizing symptoms following negative life events in the cur-
rent study, Rakesh and colleagues (2021) found that widespread 

Fig. 4. Standardized estimates for the associations between negative life events, cingulo-opercular (CO) network-hippocampus connectivity, and psychopathology. 
A) Model with CO-left hippocampus connectivity, B) Model with CO-right hippocampus connectivity. All models control for the effects of age, sex, and baseline CO- 
hippocampus connectivity, and included main and interaction effects of parental acceptance on connectivity (not pictured for clarity). Non-significant paths illus-
trated by dashed lines. *p<.05, **p<.01, ***p<.001. 
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increases in connectivity were associated with higher depressive 
symptoms following maltreatment. These findings may reflect effects 
that are specific to a given type of stressor, neural circuit, and devel-
opmental stage. 

By accounting for baseline connectivity in our model we were able to 
observe developmental changes in cortico-limbic circuitry. Results 
indicated that between baseline and year 2 follow-up, connectivity be-
tween the CO network and the hippocampus (left and right hemi-
spheres) became more strongly negative. Though no studies to our 
knowledge have examined longitudinal changes in these particular 
connections, this finding is broadly consistent with studies that show 
age-related increases (i.e., directional strengthening) of functional 
connectivity in certain circuits (Fair et al., 2010; Rakesh et al., 2021). At 
the same time, conclusions regarding developmental changes in 
resting-state connectivity are quite mixed (Stevens, 2016), perhaps due 
to the fact that the directionality and degree of development is 
region-specific (van Duijvenvoorde et al., 2019). Indeed, our results 
show that mean connectivity between the CO network and left amygdala 
across the sample was positive and decreased (became weaker) between 
baseline and year 2 follow-up (as opposed to stronger negative con-
nectivity with the hippocampus and right amygdala). It is difficult to 
evaluate how these patterns compare to prior work given that small 
samples and heterogeneity in analytic decisions and participant ages 
limit comparison across studies, and so these findings should be inter-
preted with care. Prior work illustrates differential processing in the left 
and right amygdalae (e.g., Baker and Kim, 2004; Polli et al., 2009) 
which may account in part for this finding. As additional data are 
released from the ABCD Study, we will be better able to disentangle 
typical developmental trajectories and patterns of cortico-limbic 
connectivity. 

In the present study, the effect of adversity on cortico-limbic rsFC did 
not vary by levels of parental acceptance. We had hypothesized that 
greater parental acceptance would buffer against the effect of adversity 
based on prior work that has demonstrated the protective role of warm 
and supportive caregiving on brain development (Brody et al., 2019; 
Whittle et al., 2017; Yap et al., 2008). However, we did not observe main 
or interactive effects of parental acceptance. Another recent ABCD study 
similarly did not find a buffering effect of parental acceptance against 
ecological stress. Specifically, the interaction between ecological stress 
and parental acceptance was not significantly associated with amygdala 
reactivity during the emotional EN-back task (Demidenko et al., 2021). 
It is possible that this specific index of caregiving (i.e., five items from 
the CRPBI) may not be capturing the more nuanced ways in which 
caregivers can protect against adversity, particularly with regard to the 
specific cortico-limbic connections considered in our analyses. 

We acknowledge that the participants included in these analyses 
experienced relatively low numbers of negative life events and reported 
relatively high parental acceptance. This was expected given the fact 
that the ABCD Study includes a community sample of youth who were 
not selected based on any criteria such as stress or trauma exposure. 
Relatedly, participants included in these analyses tended to have lower 
exposure to negative life events and higher socioeconomic status rela-
tive to participants who were excluded, which may have limited 
generalizability. However, we expect that the effects of adversity on 
cortico-limbic connectivity may be even more pronounced in a sample of 
youth with greater exposure to negative life events. Furthermore, youth 
with higher exposure to adversity may benefit more from protective 
factors such as high parental acceptance (relative to youth with lower 
exposure), consistent with protective-enhancing models of resilience 
(Luthar et al., 2000). This may serve as one explanation for the 
non-significant interaction effects between negative life events and 
parental acceptance in this sample, though future work with 
adversity-exposed youth will be important to formally test these 
hypotheses. 

Although our results demonstrate novel developmental findings 
related to adversity, neural circuitry, and psychopathology, they should 

be interpreted in the context of several limitations. First, our analyses 
focused on specific, a priori functional connections selected based on 
prior evidence of stress acceleration in cortico-limbic circuitry (e.g., 
Callaghan and Tottenham, 2016; Gee et al., 2013a; Herzberg et al., 
2021; Miller et al., 2020; Silvers et al., 2016; Thijssen et al., 2017). The 
effects of adversity are likely to also have more distributed effects that 
differ in other circuits (e.g., Herzberg et al., 2021; Rakesh et al., 2021). 
Second, the effects of adversity may vary depending on timing of 
exposure (Gee and Casey, 2015), but we were only able to evaluate the 
effects of overall lifetime exposure. The Life Events Scale does not 
differentiate by age of exposure, thus precluding any conclusions 
regarding timing effects. Future work with more detailed assessments 
will be better suited to evaluate how stress exposure may interact with 
sensitive periods of development. Relatedly, using an overall index of 
negative life events may have obscured important heterogeneity in 
adversity experiences; indeed, different types of environmental expo-
sures have been linked to distinct neurobiological sequelae (Cohodes 
et al., 2020; Hong and Sisk et al., 2021; McLaughlin and Sheridan, 
2016), and consideration of these heterogeneous effects and broader 
social contexts is a critical direction for future work (Simmons and 
Conley et al., 2021). Finally, consistent with the increased statistical 
power to observe small effects in large samples such as the ABCD Study, 
the effect sizes in this study are small relative to previously published 
work. Many of these previously reported effects, especially in neuro-
imaging studies, are from small samples that may contribute to inflated 
effect sizes or are underpowered to detect small effects (Dick et al., 
2021). The effects found in the present analyses may in reality be very 
small. Though we note that even small effects may still hold clinical or 
practical significance (Rosenthal et al., 2000), future work will be 
important to inform the extent to which the current findings are clini-
cally meaningful (Anvari et al., 2021). 

The ABCD Study offers unprecedented opportunities to elucidate the 
effects of environmental exposures on neurodevelopmental processes 
across adolescence. By taking advantage of the longitudinal neuro-
imaging data in the ABCD Study, we have highlighted novel neuro-
developmental mechanisms that may underlie the association between 
adversity and internalizing symptomatology. Delineating how adversity 
contributes to alterations in cortico-limbic circuitry, as well as evalu-
ating potential protective factors that may or may not buffer against 
these effects, is critical to understanding the mechanisms that link early 
adversity with psychopathology and to identifying potential interven-
tion targets for youth. 
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