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Activating Corticotropin-Releasing Factor
Systems in the Nucleus Accumbens, Amygdala,
and Bed Nucleus of Stria Terminalis: Incentive
Motivation or Aversive Motivation?
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ABSTRACT
BACKGROUND: Corticotropin-releasing factor (CRF) neural systems are important stress mechanisms in the central
amygdala (CeA), bed nucleus of stria terminalis (BNST), nucleus accumbens (NAc), and related structures. CRF-
containing neural systems are traditionally posited to generate aversive distress states that motivate
overconsumption of rewards and relapse in addiction. However, CRF-containing systems may alternatively
promote incentive motivation to increase reward pursuit and consumption without requiring aversive states.
METHODS: We optogenetically stimulated CRF-expressing neurons in the CeA, BNST, or NAc using Crh-Cre1 rats
(n = 37 female, n = 34 male) to investigate roles in incentive motivation versus aversive motivation. We paired CRF-
expressing neuronal stimulations with earning sucrose rewards in two-choice and progressive ratio tasks and
investigated recruitment of distributed limbic circuitry. We further assessed valence with CRF-containing neuron
laser self-stimulation tasks.
RESULTS: Channelrhodopsin excitation of CRF-containing neurons in the CeA and NAc amplified and focused
incentive motivation and recruited activation of mesocorticolimbic reward circuitry. CRF systems in both the CeA
and NAc supported laser self-stimulation, amplified incentive motivation for sucrose in a breakpoint test, and
focused “wanting” on laser-paired sucrose over a sucrose alternative in a two-choice test. Conversely, stimulation
of CRF-containing neurons in the BNST produced negative valence or aversive effects and recruited distress-
related circuitry, as stimulation was avoided and suppressed motivation for sucrose.
CONCLUSIONS: CRF-containing systems in the NAc and CeA can promote reward consumption by increasing
incentive motivation without involving aversion. In contrast, stimulation of CRF-containing systems in the BNST is
aversive but suppresses sucrose reward pursuit and consumption rather than increase, as predicted by traditional
hedonic self-medication hypotheses.

https://doi.org/10.1016/j.biopsych.2021.01.007
Corticotropin-releasing factor (CRF) is triggered by diverse
aversive stressors to initiate behavioral and physiological
stress responses (1–11). CRF-expressing neurons are
concentrated in the hypothalamic paraventricular nucleus
(PVN) but also occur in the nucleus accumbens (NAc) and in
extended amygdala components such as the central amygdala
(CeA) and bed nucleus of the stria terminalis (BNST) (12–24).

Stress can trigger relapse in addiction or eating disorders
(25–27). Traditional views suggest that CRF-containing sys-
tems increase reward consumption primarily by mediating the
negative valence of stress, creating unpleasant states that
promote drug relapse or eating for hedonic self-medication
(27–29). In the opponent-process theory of addiction (30–32),
taking addictive drugs activates a pleasant A-process, which is
posited to trigger underlying longer-lasting aversive B-pro-
cesses to create an unpleasant opponent B-state of with-
drawal. In particular, opponent-process neuroscience models
SEE COMMENTARY
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of addiction have posited that activation of CeA and BNST
CRF-containing systems generates unpleasant withdrawal
symptoms, again leading to relapse via hedonic self-
medication (27–29,32–35).

However, CRF systems may also activate to changing
events that mobilize biobehavioral responses, whether
stressful or not (9–11). For example, CRF-containing neurons
can be activated by positive reward stimuli (10–15,36). Some
CRF systems may have positively valenced roles in promoting
appetitive incentive motivation without inducing negative
distress or withdrawal. For instance, NAc CRF microinjections
in rats increase cue-triggered “wanting” for sucrose during
Pavlovian instrumental transfer testing comparable with
dopamine-stimulating amphetamine microinjections (13). NAc
CRF microinjections can also establish positive conditioned
place preference and increase NAc dopamine release in mice,
only becoming aversive following severe stress (14).
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Figure 1. Localization of function maps. Function
maps of effects on sucrose preference in two-choice
task of ChR2 stimulation of CRF-expressing neurons
in the (A) NAc, (C) CeA, and (E) BNST. Maps for
inhibitory halorhodopsin effects of laser illumination
on CRF-expressing neurons are shown in the
(B) NAc, (D) CeA, and (F) BNST (striped symbols).
Symbol sizes reflect size of optogenetic Fos plumes
(Figure 2 and Supplemental Results). Yellow, orange,
or red symbol colors show intensity of enhancement
of laser-induced preference for the laser1sucrose
option over the sucrose-alone option produced at
that site (effects shown for days 6–8 of two-choice
task). Conversely, blue colors show intensity of
avoidance of laser1sucrose (i.e., preference instead
for sucrose alone) (Table 1). ac, anterior commissure;
BLA, basolateral amygdala; BMA, basomedial
amygdala; BNST, bed nucleus of stria terminalis;
CeA, central nucleus of amygdala; ChR2,
channelrhodopsin-2; CPu, caudate putamen; CRF,
corticotropin-releasing factor; fx, fornix; GP, globus
pallidus; ic, internal capsule; IntC, intercalated
amygdala; LPO, lateral preoptic area; LS, lateral
septum; LV, lateral ventricle; MeA, medial amygdala;
MPA, medial preoptic area; NAc, nucleus accum-
bens; NpHR, halorhodopsin; SHy, septohypothala-
mic nucleus; VP, ventral pallidum.
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Additionally, mice self-stimulate for optogenetic excitation of
CeA CRF-expressing neurons, suggesting incentive motivation
(12). CRF in rats does mediate stress-induced reinstatement
for addictive drugs but does not require either withdrawal or
corticosterone (37–39). Overall, CRF seems not simply tied to
an aversive affective dimension but instead has a larger reg-
ulatory role in affective valence and organization of behaviors
(40–42).

Here, we examined potential positively valenced versus
negatively valenced motivational roles of CRF-expressing
neurons in the NAc, CeA, or BNST, using BAC transgenic
Crh-Cre1 rats (21) to optogenetically stimulate CRF-
containing neurons in each structure. During two-choice
incentive motivation tests, rats could choose between 1)
earning sucrose paired with laser stimulations and 2) equiv-
alent sucrose option without laser (43). In progressive ratio
breakpoint tests, laser stimulation effects on incentive moti-
vation magnitude for sucrose was assessed. Finally, laser
self-stimulation tests assessed whether CRF-containing
neuronal stimulation was rewarding on its own. We found
that NAc and CeA CRF-containing neuron stimulation
enhanced sucrose incentive motivation, was reinforcing, and
recruited activation of mesolimbic circuitry. Conversely,
BNST CRF-containing neuronal stimulation was avoided,
suppressed sucrose pursuit, and recruited pain-related
circuitry.
Biological Psyc
METHODS AND MATERIALS

Animals

Female (n = 37) and male (n = 34) Crh-Cre1 Wistar rats (.250
g at surgery) (21) were bred and phenotyped in-house. Same-
sex groups were housed on a 12-hour reverse light/dark cycle
(w21�C) with ad libitum food (Purina, St. Louis, MO) and water.
All experimental procedures were approved by the University
of Michigan Institutional Animal Care & Use Committee in
accordance with NIH animal care and use guidelines.
Surgery

Surgeries followed previous methods (Supplemental Methods)
(43–45). Bilateral 1.0-mL infusions in the NAc, CeA, or BNST
contained either active AAV-DIO-ChR2-eYFP virus (n = 33) or
optically inactive control virus AAV-DIO-eYFP (n = 19) to infect
only neurons containing Cre-recombinase. We note that the
Crh-Cre BAC rats used here express Cre primarily in CRF
neurons that are also GABAergic (gamma-aminobutyric acid-
ergic) (21). This makes them suitable for our study, given that
CeA, BNST, and NAc CRF-expressing neurons predominantly
coexpress GABA. A separate group received halorhodopsin
AAV-DIO-NpHR-eYFP (n = 19) virus for CRF-containing
neuronal inhibition. NAc shell, lateral CeA, or dorsolateral
BNST sites were staggered across individuals (Figure 1 and
hiatry June 15, 2021; 89:1162–1175 www.sobp.org/journal 1163
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Table 1), and optic fibers were secured with surgical screws
and acrylic.

Stimulation Parameters

Channelrhodopsin-2 (ChR2) laser illumination (2–3 mW; 473
nm) was tested at 10 Hz and 40 Hz (46–48). Inhibitory hal-
orhodopsin (NpHR) testing used constant illumination (8–10
mW; yellow 592 nm) (49).

Two-Choice Sucrose

An instrumental two-choice task evaluated whether pairing
CRF-expressing neuronal stimulation in the NAc, CeA, or
BNST with one sucrose reward made it more or less desirable
than an identical sucrose reward delivered without laser
(Supplemental Methods) (43). Briefly, rats learned that presses
on one lever earned sucrose pellets plus 8-second laser illu-
minations and an 8-second tone or white noise (laser-
1sucrose). Presses on a different lever earned sucrose and
noise/tone but no laser (sucrose alone). Lever and tone/noise
assignments were balanced across rats but remained perma-
nent for each rat.

Reinforcement schedules increased across 8 test days:
fixed ratio (FR) 1 (days 1–3), FR4 (day 4), random ratio (RR) 4
(day 5), RR6 (days 6–8). Each day, rats were required to earn
rewards twice from each lever presented alone, before free
choice. The alternate laser frequency (10 Hz/40 Hz) was tested
on 3 subsequent RR6 days. Separate halorhodopsin rats un-
derwent identical procedures with yellow laser.

Progressive Ratio

Progressive ratio tests assessed whether ChR2 stimulation of
CRF-containing neurons affects magnitude of sucrose incen-
tive motivation (Supplemental Methods) (43). Briefly, rats were
tested one day with only the laser1sucrose (10 Hz/40 Hz) lever
available, another day with sucrose alone, and a third day with
laser1sucrose using the alternate frequency. Within each
session, the responses required to earn the next reward
increased after each reward, and breakpoint or ratio reached
during 30-minute sessions was assessed. Separate hal-
orhodopsin rats underwent testing with inhibition.
Table 1. Histological Placements of Experimental Animals

Target

Confirmed Placement Ranges, mm From
Bregma ChR2, n

A/P M/L D/V Uni B

CeA 22.16 to 23.00 64.2 to 4.7 27.0 to 27.6 3 7

NAc 11.44 to 0.96 60.8 to 1.6 26.3 to 27.6 7 5

BNST 10.24 to 20.24 61.6 to 2.0 25.8 to 26.4 4 7

Table shows anatomical confirmed placement ranges for experimental an
Confirmed placement ranges are determined from Paxinos and Watson br
bregma. n values for excitatory ChR2, inactive control eYFP virus, and
placements or unilateral virus/fiber placements in one hemisphere, with
contralateral miss sites were located in either the BLA, MeA, or optic
hemispheres. For NAc rats (middle), placements for unilateral misses w
expression in these structures was observed. For BNST rats (bottom), site
virus expression. See Figure 1.

ac, anterior commissure; A/P, anterior/posterior; Bil, bilateral; BLA, baso
nucleus of amygdala; ChR2, channelrhodopsin-2; DS, dorsal striatum; D
globus pallidus; MeA, medial amygdala; M/L, medial/lateral; MS, medial se
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Spout-Touch Laser Self-stimulation

Incentive properties of laser alone without sucrose were tested
in instrumental spout-touch self-stimulation tests. With 2
empty waterspouts available, each touch on a designated laser
spout provided stimulation (3 s; 10 Hz/40 Hz; 30 min). Touches
on the other inactive spout earned nothing as a baseline
exploration measure. Rats were classified on day 1 as robust,
low, or non–self-stimulators, and days 2–3 evaluated consis-
tency of self-stimulation (Supplemental Methods) (45).
Place-Based Self-stimulation

In a different place-based self-stimulation test, rats could
earn laser self-stimulations by remaining in a designated
laser-delivering chamber within a 3-chamber apparatus (2
major, 1 smaller center; Supplemental Methods) after an
initial session without laser evaluated baseline preference.
For 3 test days, laser-delivering chamber entries triggered
laser (3 s on/4 s off), which continued cycling as long as rats
remained, terminating on exit. Time in laser-delivering minus
time in alternative no-laser chamber difference scores were
assessed.
Histology

Briefly, laser stimulations preceded lethal doses of sodium
pentobarbital and transcardial perfusions for Fos assess-
ment (Supplemental Methods) (44). Brains were extracted,
postfixed, sectioned into 40-mm slices via cryostat (Leica,
Buffalo Grove, IL), processed for GFP (green fluorescent
protein) and cFos immunohistochemistry (Figure 2), and
imaged using a digital camera (Qimaging, Teledyne Pho-
tometrics, Tucson, AZ) and fluorescence microscope
(Leica).

Coronal sections were imaged (103 magnification) to
quantify distributed Fos using Paxinos & Watson atlas (50).
Laser-recruited changes in Fos expression in the NAc/CeA/
BNST groups were compared with eYFP (enhanced yellow
fluorescent protein) control levels in several meso-
corticolimbic structures (Box 1).
eYFP, n NpHR, n

Contralateral Misses, Locationsil Uni Bil Uni Bil

2 5 3 4 BLA, MeA, optic tract

3 3 3 3 DS, MS, NAc core

3 3 2 4 ac, GP

imals targeting either the lateral CeA, NAc shell, or dorsolateral BNST.
ain atlas (50) and display A/P, M/L, and D/V coordinates in mm from
inhibitory NpHR groups include those with bilateral fiber and virus
a contralateral miss in the other hemisphere. For CeA rats (top),
tract, with no substantial virus expression found in these missed
ere located in the DS, MS, or NAc core, and no substantial viral
s of unilateral misses were in either the ac or GP without substantial

lateral amygdala; BNST, bed nucleus of stria terminalis; CeA, central
/V, dorsal/ventral; eYFP, enhanced yellow fluorescent protein; GP,

ptum; NAc, nucleus accumbens; NpHR, halorhodopsin; Uni, unilateral.
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Figure 2. Virus expression and local Fos plumes. Photomicrograph (310
magnification) shows ChR2 virus expression (green), and neuronal Fos
protein expression (magenta) immediately surrounding optic fiber tips for
Crh-Cre1 rats in the (A) NAc shell, (C) lateral division of CeA, and (E)
dorsolateral division of BNST. Blue diagrams at right show maps displaying
size and intensity of local Fos plumes produced in each structure by laser
stimulation of CRF-containing neurons expressing ChR2 (i.e., zones of
.150% Fos elevation and .200% Fos elevation over baselines [100%])
measured in laser-illuminated enhanced yellow fluorescent protein control
rats. Average Fos plume diameters are shown for Crh-Cre1 ChR2 rats after
laser illumination in (B) NAc, (D) CeA, and (F) BNST CRF-containing neu-
rons. ac, anterior commissure; BLA, basolateral amygdala; BNST, bed nu-
cleus of stria terminalis; CeA, central nucleus of amygdala; CeC, capsular
central amygdala; CeL, lateral central amygdala; CeM, medial central
amygdala; ChR2, channelrhodopsin-2; CRF, corticotropin-releasing factor;
D, dorsal to fiber tip; dlBNST, dorsolateral BNST; ic, internal capsule; L,
lateral to fiber tip; LV, lateral ventricle; M, medial to fiber tip; NAc, nucleus
accumbens; NAcC, NAc core; NAcSh, NAc shell; V, ventral to fiber tip.
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CRF and Cre Expression Assessed by RNAScope
Fluorescence In Situ Hybridization

Colocalization of Cre and CRF in infected neurons was verified
with fluorescence in situ hybridization (Supplement) (16,51).
Cells containing Cre and Crh messenger RNA were manually
counted in 100 3 100 3 17 mm volumes from core samples in
the NAc, CeA, and BNST (n = 6).

Statistical Analyses

Mixed-model analyses of variance evaluated within-group
(e.g., laser-pairings) and between-group effects (e.g., ChR2/
eYFP) followed by post hoc comparisons with Bonferroni
Biological Psyc
corrections. Distant Fos was evaluated by unpaired t tests.
Effect sizes are Cohen’s d. For all analyses, significance level
was p = .05, two-tailed.
RESULTS

Cre and CRF Colocalization

Crh and Cre messenger RNAs were visualized using fluores-
cence in situ hybridization in slices from Crh-Cre1 rats (n = 6)
and found to typically occur together in the same neurons.
CRF1 and Cre1 coexpressing neurons were densely
concentrated within the lateral CeA (10.1 6 0.9 colabeled
neurons per 100 3 100 3 17 mm volume) and dorsolateral
BNST (10.0 6 0.7). In the NAc, CRF1 neurons were sparsely
distributed throughout the medial shell (6.0 6 0.7 colabeled
neurons, or nearly one-half CeA/BNST density) (Figure 3 and
Supplemental Results).

NAc and CeA CRF-Expressing Neurons Recruit
Similar Structures, BNST Shows Distinct Activation

Recruitment of Fos elevation in distant brain circuitry was
assessed following CRF-expressing neuron excitation in the
NAc, CeA, or BNST (Box 1 and Table S1).

Laser ChR2 excitation of CRF-containing neurons in the
NAc shell recruited 150%–200% increases in distant Fos
expression over eYFP control levels in reward-related
mesocorticolimbic structures, including the NAc core,
CeA, ventral tegmentum (VTA), ventral pallidum (VP), and
lateral hypothalamus (LH) (Figure 4A). Similarly, CeA stim-
ulation of CRF-expressing neurons excitation increased
Fos expression 150%–250% in the NAc shell, VTA, VP,
and LH (Figure 4B).

Conversely, in BNST ChR2 rats, CRF-containing neuron
excitation recruited distant Fos 150%–200% elevation in
several structures related to pain, aversion, fear, or satiety, the
midbrain periaqueductal gray, PVN, and basolateral amygdala,
in addition to 150% elevation in some mesocorticolimbic
structures (Figure 4C).

NAc and CeA CRF-Expressing Neuronal Stimulation
Enhances Paired-Sucrose Value

NAc CRF-Containing Neuron Incentive Enhance-
ment. Pairing ChR2 stimulation of CRF-containing neu-
rons in the NAc (n = 8) with earning sucrose rewards in the
two-choice task caused rats to pursue the paired laser-
1sucrose option nearly exclusively over the other identical
sucrose-alone option without laser (F1,6 = 46.700; p ,

.001) (Figure 5A). Rats reached a 7:1 ratio preference by
final day 8 (t7 = 5.846; p = .001; 95% CI, 208–491; d =
2.66). Both female and male ChR2 Crh-Cre1 rats showed
strong preferences for the NAc laser1sucrose lever over
the sucrose-alone lever (females, 5:1 6 1 ratio; males, 7:1
6 1) (Figure S1A). Both 10 Hz (n = 5; F1,4 = 24.540; p =
.008) and 40 Hz frequencies of NAc laser excitation (n = 7;
F1,6 = 39.209; p = .001) supported similar laser1sucrose
preference, with no difference between frequencies (F1,10 =
1.186; p = .302) (Figure S2C). In contrast, NAc eYFP
control rats with inactive virus chose randomly between
hiatry June 15, 2021; 89:1162–1175 www.sobp.org/journal 1165
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Figure 3. CRF and Cre colocalization verification
through fluorescence in situ hybridization. Repre-
sentative images for Cre mRNA expression and Crh
mRNA expression in the (A) NAc shell, (B) lateral
division of CeL, and (C) dlBNST in Crh-Cre1 rats (n =
6). Low-power (203) and high-power (403) images
show localization of neurons expressing Cre mRNA
(green) or Crh mRNA (magenta) and Cre/CRF
colocalization with cell bodies stained with DAPI
(blue). Arrows point to examples of cells coex-
pressing Cre and Crh mRNAs. Scale bars = 0.1 mm.
See Supplemental Methods and Supplemental
Results. ac, anterior commissure; BLA, basolateral
amygdala; CeC, capsular central amygdala; CeL,
central amygdala; CeM, medial central amygdala;
CRF, corticotropin-releasing factor; dlBNST, dorso-
lateral bed nucleus of stria terminalis; ic, internal
capsule; LS, lateral septum; LV, lateral ventricle;
mRNA, messenger RNA; NAc, nucleus accumbens.
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Box 1. Brain Regions Assessed for Laser-Recruited Changes in
Fos Expression

Orbitofrontal cortex (OFC)

Infralimbic cortex (IF)

Nucleus accumbens core (NAcC)

Anterior nucleus accumbens shell (aNAcSh)

Posterior nucleus accumbens shell (pNAcSh)

Anterior bed nucleus of stria terminalis (aBNST)

Posterior bed nucleus of stria terminalis (pBNST)

Anterior ventral pallidum (aVP)

Posterior ventral pallidum (pVP)

Anterior lateral hypothalamus (aLH)

Posterior lateral hypothalamus (pLH)

Paraventricular nucleus hypothalamus (PVN)

Medial amygdala (MeA)

Central amygdala (CeA)

Basolateral amygdala (BLA)

Ventral tegmentum (VTA)

Substantia nigra (SN)

Midbrain periaqueductal gray (PAG)

Laser-induced enhancements in Fos expression were
assessed in the listed mesocorticolimbic brain regions,
following CRF-expressing neuronal excitation in the NAc, CeA,
or BNST. Distant Fos levels in ChR2 animals were compared
with levels assessed in inactive eYFP control rats that
underwent identical Fos induction procedures. See Figure 4
and Supplemental Methods.

ChR2, channelrhodopsin-2; CRF, corticotropin-releasing
factor; eYFP, enhanced yellow fluorescent protein.
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laser1sucrose and sucrose-alone options (n = 6; F1,5 =
0.014; p = .911) (Figure 5B).

NAc CRF-Containing Neuron Inhibition Paired-Avoi-
dance. Separate inhibition rats, with NpHR in the NAc,
developed strong avoidance of the paired laser1sucrose op-
tion and instead preferred sucrose alone by a 20:1 ratio (n = 6;
F1,5 = 25.741; p = .004) (Figure 5C).

CeA CRF-Containing Neuron Incentive Enhance-
ment. In the CeA, ChR2 stimulation of CRF-containing neu-
rons induced similar near-exclusive pursuit of the paired
laser1sucrose option (n = 9; F1,7 = 19.227; p = .003)
(Figure 6A), growing to a .10:1 ratio over sucrose alone by
day 8 (t8 = 5.110; p = .001; 95% CI, 241–638; d = 3.09). Female
and male ChR2 Crh-Cre1 rats had similar preference ratios for
CeA laser1sucrose over sucrose alone (females, 13:1 6 2;
males, 10:1 6 2) (Figure S1A). Both 10 Hz (n = 9; F1,8 = 59.101;
p , .001) (Figure S2D) and 40 Hz frequencies of CeA laser
excitation (n = 5; F1,4 = 90.572; p = .001) supported compa-
rable levels of preference (F1,12 = 0.534; p = .479). By contrast,
control CeA eYFP rats chose equally between sucrose
options (n = 7; F1,6 = 0.003; p = .959) and so differed
significantly from CeA ChR2 rats (F1,14 = 4.853; p = .045)
(Figure 6B).
Biological Psyc
CeA CRF-Containing Neuron Inhibition Paired-
Avoidance. NpHR CeA inhibition of CRF-containing neurons
(n = 7) produced avoidance of the laser-paired sucrose option,
instead causing a 10:1 ratio preference for sucrose alone
(F1,6 = 72.960, p , .001) (Figure 6C).

NAc and CeA CRF-Expressing Neuronal Excitation
Increases Breakpoint

Progressive ratio breakpoint tests assessed whether CRF-
containing neuron stimulation changed the intensity of incen-
tive motivation to obtain sucrose reward. NAc ChR2 rats (n = 6)
worked twice as hard in the progressive ratio task on their
laser1sucrose day and achieved 200% higher effort break-
points than on the sucrose-alone day (t5 = 6.010; p = .002;
95% CI, 23–58; d = 2.6) (Figure 5D). Both female (210 6 16%)
and male rats doubled their breakpoints in the laser1sucrose
condition (170 6 24%) (Figure S1B). Similarly, 10 Hz (t3 =
4.841; p = .017; n = 4) and 40 Hz (t5 = 6.010; p = .002; n = 6)
(Figure S3D) laser frequencies supported similar doubling of
breakpoint. NAc eYFP control rats showed no breakpoint dif-
ferences between laser1sucrose and sucrose-alone days
(n = 5; t4 = 0.533; p = .62) (Figure 5D) and so differed signifi-
cantly from ChR2 rats (F1,9 = 6.689; p = .029).

In the CeA, excitation of CRF-containing neurons also
increased laser1sucrose breakpoint by .200% over sucrose
alone (n = 7; t6 = 6.712; p = .001; 95% CI, 34–73; d = 3.58)
(Figure 6D). CeA stimulation doubled breakpoint in both fe-
males (250 6 56%) and males (250 6 25%) (Figure S1B) and
at both 10 Hz (n = 7; t6 = 4.992; p = .002) and 40 Hz fre-
quencies (n = 5; t4 = 4.3981; p = .012) (Figure S3D). Control
CeA eYFP rats (n = 5) showed no laser effect on breakpoint
(t4 = 0.314; p = .769) (Figure 6D) and significantly differed from
ChR2 rats (F1,10 = 9.590; p = .011).

BNST CRF-Containing Neuron Excitation Induces
Laser-Paired Sucrose Avoidance

In the two-choice task, BNST ChR2 rats avoided the laser-
1sucrose option and instead preferred sucrose alone (n = 8;
F1,6 = 13.927; p = .010) (Figure 7A), reaching an 8:1 sucrose-
alone preference by day 8 (n = 8; t7 = 6.059; p = .001; 95%
CI, 214–488; d = 4.72). ChR2 males showed numerically
stronger avoidance of BNST laser1sucrose (10:1 6 3 prefer-
ence for sucrose alone) than females (5:1 6 1), but the small
group sizes were not adequately powered to statistically
evaluate sex differences here (Figure S1). Both 10 Hz (n = 7;
F1,6 = 30.241; p = .002) and 40 Hz frequencies supported
similar laser1sucrose avoidance (n = 5; F1,4 = 9.474; p = .037)
with no difference in magnitude (F1,10 = 0.996; p = .342). In
contrast, BNST eYFP control rats chose equally between the
two sucrose options (n = 6; F1,5 = 0.054; p = .826) (Figure 7B).

BNST NpHR Two-Choice. BNST NpHR rats (n = 6)
showed no statistical difference in choice between sucrose
options (F1,5 = 0.167; p = .700) (Figure 7C), although there was
a nonsignificant trend toward preferring the laser1sucrose
option paired with halorhodopsin inhibition.

BNST CRF-Containing Neuron Excitation Suppresses
Sucrose Incentive Motivation. Excitation of BNST CRF-
hiatry June 15, 2021; 89:1162–1175 www.sobp.org/journal 1167
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Figure 4. Laser-enhancements in distant Fos expression. Brain maps
show recruitment of distant Fos elevation in mesocorticolimbic structures
following CRF-containing neuron ChR2 stimulation in the NAc, CeA, or
BNST (colors denote percent Fos elevation vs. eYFP control rats, all two-
way unpaired t tests). (A) NAc ChR2 stimulation (n = 3 female, n = 3
male): NAcC, VTA, aVP, pVP, aLH, pLH, MeA, CeA, aBNST, and pBNST. (B)
CeA ChR2 stimulation (n = 3 female, n = 3 male): OFC, aNAcSh, pNAcSh,
NAcC, aVP, pVP, aLH, pLH, MeA, VTA, aBNST, pBNST, and minor in-
creases in BLA (,150%). (C) BNST ChR2 stimulation (n = 2 female, n = 3
male): BLA, PAG, hypothalamic PVN, NAcC, pVP, aLH, pLH, MeA, and
minor increases in pNAcSh (,150%) and CeA (,150%). See Table S1.
Mean and SEM reported; *p , .05; **p , .01; ***p , .001. aBNST, anterior
BNST; aLH, anterior LH; aNAcSh, anterior NAc shell; aVP, anterior VP; BLA,
basolateral amygdala; BNST, bed nucleus of stria terminalis; CeA, central
nucleus of amygdala; CeL, lateral central amygdala; ChR2,
channelrhodopsin-2; CRF, corticotropin-releasing factor; dlBNST, dorso-
lateral BNST; eYFP, enhanced yellow fluorescent protein; IF, infralimbic
cortex; LH, lateral hypothalamus; MeA, medial amygdala; NAc, nucleus
accumbens; NAcC, NAc core; OFC, orbitofrontal cortex; PAG, peri-
aqueductal gray; pBNST, posterior BNST; pLH, posterior LH; pNAcSh,
posterior NAc shell; PVN, paraventricular nucleus; pVP, posterior VP; SN,
substantia nigra; VP, ventral pallidum; VTA, ventral tegmentum.
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containing neurons suppressed incentive motivation to earn
sucrose, reducing the laser1sucrose breakpoint effort to half
1168 Biological Psychiatry June 15, 2021; 89:1162–1175 www.sobp.o
that of sucrose alone (t7 = 5.492; p = .001; 95% CI, 20–49; d =
2.25) (Figure 7D). Female rats (49 6 27%) and male rats (54 6
14%) showed similar breakpoint reductions, and 10 Hz (t7 =
6.178; p, .001; n = 8) and 40 Hz frequencies were comparably
effective (t3 = 5.333; p = .013; n = 4). By contrast, BNST eYFP
control rats showed no breakpoint laser effects (n = 5; t4 =
0.441; p = .682) (Figure 7D) and so differed from BNST ChR2
rats (F1,11 = 5.874, p = .034).

Opposite Breakpoint Effects for CRF-Expressing
Neuronal Inhibition

Halorhodopsin inhibition of CRF-containing neurons in the
NAc (n = 6; Figure 5D) or CeA (n = 7; Figure 6D) suppressed
laser1sucrose breakpoint to w50% that of sucrose alone
(NAc: t5 = 5.308; p = .003; 95% CI, 19–53; d = 2.58; CeA: t6 =
4.032; p = .007; 95% CI, 13–55; d = 2.33). BNST CRF-
containing neuronal inhibition did not significantly alter break-
point effort, although there was a nonsignificant trend toward a
higher breakpoint for laser 1 sucrose (n = 6; t5 = 0.717; p =
.506) (Figure 7D).

Spout-Touch Self-stimulation: NAc and CeA
Stimulation of CRF-Expressing Neurons by Itself Is
a Moderate Reward

In the instrumental self-stimulation task, each touch on the
designated laser spout earned 3 seconds of laser excitation,
whereas inactive spout touches delivered nothing. No NAc
ChR2 rats met the criterion for robust self-stimulation of .50
touches on the laser spout on day 1 (45). However, 7 of 8 NAc
ChR2 rats demonstrated low-level self-stimulation, meeting a
lesser criterion of only .10 laser spout touches and .2 times
more touches on the laser spout as on the inactive spout. On
days 2–3, those 7 NAc rats achieved 25–35 self-stimulations
per 30-minute session, roughly 4 times more than inactive
spout touches (n = 7; F1,5 = 7.823; p = .038) (Figure 8A) and
w1.5 times more laser spout touches than eYFP control rats
(F1,9 = 9.949; p = .012). Female and male NAc ChR2 rats
showed similar levels of self-stimulation (males: 29 6 16 illu-
minations; females: 29 6 8), and 10 Hz and 40 Hz frequencies
both supported self-stimulation (10 Hz: 25 6 10, n = 3; 40 Hz:
32 6 10, n = 4).

CeA Self-stimulation. Overall, 2 of 8 CeA ChR2 rats met
the .50 illuminations criterion for robust self-stimulation,
whereas 7 met the lower .10 moderate self-stimulation cri-
terion. These 7 CeA ChR2 rats self-stimulated w25–35 times
on days 2–3, which was .300% more than the inactive spout
(F1,5 = 12.009; p = .018) (Figure 8B), and earned.300% more
illuminations than eYFP control rats (F1,9 = 17.576; p = .002).
The two most robust self-stimulators were both females and
reached 40 6 3 self-stimulations per day (vs. males: n = 5, 23
6 7 self-stimulations per day). Both 10 Hz (n = 4) and 40 Hz
(n = 3) frequencies supported similar levels of CeA self-
stimulation (10 Hz: 27 6 10 self-stimulations; 40 Hz: 29 6 8).

BNST Fails to Support Self-stimulation. No BNST
ChR2 rats met any criteria for self-stimulation of CRF-
containing neurons, responding equally at low rates on both
spouts (n = 8; F1,6 = 0.006; p = .939) (Figure 8C).
rg/journal
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Figure 5. CRF-containing neuron stimulation in the
NAc biases and amplifies sucrose motivation. (A)
ChR2 excitation of CRF-containing neurons in the NAc
shell caused preference for paired laser1sucrose over
sucrose alone in two-choice test (n = 3 female, n = 5
male), reaching a 7:1 ratio by day 8. In contrast, (B)
control NAc eYFP rats chose equally between options.
(C) NpHR inhibition of CRF-containing neurons in the
NAc shell (n = 3 female, n = 3 male) caused avoidance
of laser1sucrose and sucrose-alone preference. (D) In
a progressive ratio test, NAc ChR2 CRF-containing
neuron excitation enhanced incentive motivation
breakpoint of laser1sucrose over sucrose alone (n = 3
female, n = 3 male). ChR2 rats had higher laser-
1sucrose breakpoints than eYFP control rats (n = 5).
Laser did not affect NAc eYFP control breakpoint be-
tween progressive ratio test days. NAc NpHR inhibition
of CRF-containing neurons reduced laser1sucrose
breakpoint motivation (n = 3 female, n = 3 male). Mean
and SEM reported; *p , .05; **p , .01; ***p , .001.
ChR2, channelrhodopsin-2; CRF, corticotropin-
releasing factor; eYFP, enhanced yellow fluorescent
protein; FR, fixed ratio; NAc, nucleus accumbens;
NpHR, halorhodopsin; RR, random ratio.
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CeA and NAc Self-stimulation Does Not Account for
Laser Effects on Sucrose Motivation. Did laser self-
stimulation in the CeA and NAc substantially drive laser’s abil-
ity to control sucrose pursuit in two-choice or progressive ratio
tasks? The answer appears to be no; there was no correlation
between self-stimulation values, which were generally low, and
control of sucrose pursuit in the two-choice test (NAc: n = 6,
r = .624, p = .098; CeA: n = 7, r =2.024, p = .926), nor was there
a correlation between self-stimulation and enhancement of
progressive ratio breakpoint, which was relatively strong in most
NAc or CeA ChR2 rats (Pearson’s correlation; NAc: n = 6,
r = 2.349, p = .498; CeA: n = 7, r = .605, p = .280). Finally, even
CeA (n = 1) and NAc (n = 1) rats that failed to self-stimulate
showed w200% laser-induced enhancements of breakpoint
and control of laser1sucrose preference (11:1 ratio) as strong as
in self-stimulators (w200%, 9:1).

NAc and CeA Place-Based Self-stimulation, BNST
Place-Avoidance

Rats were additionally tested for self-stimulation using a sec-
ond place-based task, where entering and staying in a desig-
nated chamber earned laser (cycling 3 s on/4 s off; 15 min).
Biological Psyc
NAc and CeA Place-Based Self-stimulation. NAc
ChR2 rats spent .150% more time in the laser-delivering
chamber than in the no-laser chamber (F1,6 = 6.664;
p = .042) (Figure 9A). NAc ChR2 rats also spent 150% longer in
the laser-delivering chamber than they had during previous
baseline tests without laser (t7 = 3.376; p = .012; 95% CI,
56–318; d = 1.21) and more time in the laser-delivering
chamber than inactive eYFP control rats (t11 = 2.318;
p = .041; 95% CI, 9–353; d = 1.05). Both female (n = 2) and
male (n = 6) NAc ChR2 rats spent comparably more time in the
laser-delivering chamber (female: 160 6 20%; males: 140 6
10%), and 10 Hz (n = 3; 160 6 20%) and 40 Hz (n = 5; 160 6
20%) frequencies were equally effective.

CeA ChR2 rats (n = 8) demonstrated robust place-based
self-stimulation of CeA CRF-containing neurons, spending
w200% more time in the laser-delivering than the no-laser
chamber (F1,6 = 21.085; p = .004). CeA ChR2 rats also spent
200% longer in the laser-delivering chamber than they had
during previous baseline tests without laser (t7 = 3.038; p =
.019; 95% CI, 63–509; d = 1.41) and more than CeA eYFP
control rats (t11 = 2.062; p = .011; 95% CI, 57–484; d = 1.20).
Both female (n = 2; 160 6 20% more laser-delivering time) and
male (n = 3; 200 6 20%) CeA ChR2 rats showed place-based
hiatry June 15, 2021; 89:1162–1175 www.sobp.org/journal 1169
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Figure 6. CRF-containing neuron stimulation in
the CeA biases and amplifies sucrose motivation. (A)
CeA ChR2 excitation of CRF-containing neurons
caused near-exclusive preference for laser1sucrose
over sucrose-alone rewards in two-choice test (n = 4
female, n = 5 male), reaching a 10:1 ratio by day 8.
(B) CeA eYFP control rats chose equally between
sucrose options (n = 7) and differed from CeA ChR2
rats. (C) CeA NpHR inhibition of CRF-containing
neurons caused laser1sucrose avoidance and
sucrose-alone preference (n = 2 female, n = 5 male).
(D) In progressive ratio test, CeA CRF-containing
neuron excitation enhanced incentive motivation for
sucrose breakpoint (n = 3 female, n = 4 male). Laser
did not affect CeA eYFP control breakpoint (n = 5),
which differed from ChR2 rats. CeA NpHR inhibition
of CRF-containing neurons reduced laser1sucrose
breakpoint (n = 2 female, n = 5 male). Mean and SEM
reported; *p , .05; **p , .01; ***p , .001. CeA,
central nucleus of amygdala; CeL, lateral central
amygdala; ChR2, channelrhodopsin-2; CRF,
corticotropin-releasing factor; eYFP, enhanced yel-
low fluorescent protein; FR, fixed ratio; NpHR, hal-
orhodopsin; RR, random ratio.
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self-stimulation, and 10 Hz (n = 5) and 40 Hz (n = 3) laser
frequencies were both effective (10 Hz: 2006 10%; 40 Hz: 150
6 30%).

BNST Induces Place-Avoidance. BNST ChR2 rats mildly
avoided the laser-delivering chamber that stimulated CRF-
containing neurons in BNST, spending only ,75% as much
time there as in the no-laser chamber (n = 10; F1,8 = 6.593; p =
.033; Figure 9C). ChR2 BNST rats also spent less time in the
laser-delivering chamber than they had during baseline tests
without laser (t9 = 3.188; p = .011; 95% CI, 67–397; d = 1.25)
and less time than eYFP control rats (t13 = 2.737; p = .017;
95% CI, 49–415; d = 1.76). Both female (n = 5) and male (n = 5)
BNST ChR2 rats showed avoidance of the laser-delivering
chamber (female: ,85 6 10%; males: ,50 6 10%), and
both 10 Hz (n = 6; ,65 6 10%) and 40 Hz (n = 4; ,70 6 10%)
frequencies induced place-based avoidance.

DISCUSSION

Our results demonstrate that optogenetic excitation of CRF-
containing neural systems in both the lateral CeA and the
medial NAc shell focused and increased incentive motivation
1170 Biological Psychiatry June 15, 2021; 89:1162–1175 www.sobp.o
or "wanting" for sucrose and carried positive valence by itself.
ChR2 stimulation of CRF-containing neurons in the CeA and
NAc 1) focused intense incentive motivation on the laser-
1sucrose option over an alternative sucrose-alone option in
the two-choice task, 2) amplified incentive motivation,
measured as breakpoint effort for sucrose reward, and 3) was
actively sought by itself as laser self-stimulation. Simulta-
neously, ChR2 stimulation of CRF-expressing neurons in the
CeA and NAc recruited reward-related mesolimbic circuitry,
reflected as Fos increases in the VTA, NAc, VP, and LH.

In contrast, BNST optogenetic excitation of CRF-containing
neurons produced aversive motivation. BNST CRF-containing
neuronal excitation here caused avoidance of the laser-
1sucrose option and of laser by itself; suppressed breakpoint
of sucrose motivation; and recruited increased Fos in the PVN
and periaqueductal gray, structures associated with negative
avoidance or distress.

Our NAc and CeA incentive effects are consistent with
previous reports that CRF systems in the CeA or NAc can
contribute positively to reward motivation (11–15,36). NAc
CRF microinjections increase bursts of cue-triggered
“wanting” for sucrose rewards in rats and cause
rg/journal
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Figure 7. CRF-containing neuron stimulation in the
BNST is avoided and suppresses sucrose motivation.
(A) ChR2 rats avoided laser1sucrose that stimulated
CRF-expressing neurons in BNST in two-choice test
(n = 5 female, n = 3 male). BNST ChR2 laser1sucrose
avoidance rose to an 8:1 opposite preference for su-
crose alone by day 8. (B) Control eYFP BNST rats
chose equally between sucrose options (n = 6). (C)
BNST NpHR rats (n = 3 female, n = 3 male) showed no
significant difference between inhibitory laser1sucrose
and sucrose alone. (D) BNST ChR2 excitation of CRF-
containing neurons suppressed breakpoint effort for
sucrose in progressive ratio tests (n = 5 female, n = 3
male). Laser did not affect BNST eYFP control break-
point, and so eYFP rats significantly differed from
BNST ChR2 rats in laser effects on breakpoint. NpHR
inhibition of BNST CRF-containing neurons did not
statistically alter sucrose breakpoint, despite a
nonsignificant trend toward increased motivation (n = 3
female, n = 3 male). Mean and SEM reported; *p, .05;
**p , .01; ***p , .001. BNST, bed nucleus of stria
terminalis; ChR2, channelrhodopsin-2; CRF,
corticotropin-releasing factor; dlBNST, dorsolateral
BNST; eYFP, enhanced yellow fluorescent protein; FR,
fixed ratio; NpHR, halorhodopsin; RR, random ratio.
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conditioned place preference and increase NAc dopamine
release in nonstressed mice (13–15).

CRF systems mobilize bio/behavioral responses to chang-
ing events (9–11) and can be responsive to either positive or
negative events. For instance, it has long been known that CRF
systems in the CeA respond to positive reward stimuli, such as
food cues, not only to aversive stimuli (11). Indicating positively
valenced roles, mice optogenetically self-stimulate CRF-con-
taining neurons in the CeA (12). Our results confirm CeA CRF-
containing neuronal self-stimulation in rats and extend CRF
neuronal self-stimulation to NAc. They further demonstrate
that NAc and CeA activations potentiate and focus incentive
motivation for natural sucrose reward. Conversely, CRF-
containing neuronal stimulation in BNST produced opposite
negative motivational effects.

Future studies could identify the specific projections from
the CeA, NAc, and BNST that mediate these effects. For
example, CeA CRF-containing neurons project to the LH, VP,
VTA, and BNST (21,52–56). CeA-BNST CRF-containing pro-
jections may reliably mediate aversive motivation (35,53–55),
implying that projections to the LH, VP, VTA, or elsewhere may
Biological Psyc
mediate incentive motivation effects. ChR2 stimulation here
likely activated these CeA-BNST projections too, implying that
other positively valenced CeA outputs may overpower BNST
aversive effects when simultaneously activated. For the NAc,
local connections of CRF-containing neurons may mediate
incentive motivation effects, such as intra-NAc connections to
cholinergic interneurons, which may modulate dopamine
release in NAc (14–16). Neuroanatomically, it would be of in-
terest to additionally investigate the motivational effects of
dense CRF-containing neuronal projections from the hypo-
thalamic PVN. However, PVN CRF-containing neurons may
co-release glutamate, whereas the Crh-Cre rat line used here
may primarily target CRF-expressing neurons that co-release
GABA (21,57).

Neurochemically, it would be useful in future studies to
examine the roles in these motivational effects of CRF release
versus other neurotransmitters co-released by CRF-
expressing neurons, such as GABA, dynorphin, neurotensin,
and somatostatin (21,47,58–60). Co-release might be related
to why CRFR1 antagonists may fail to block stress-induced
craving in clinical models (61–64).
hiatry June 15, 2021; 89:1162–1175 www.sobp.org/journal 1171
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Figure 8. Laser is self-stimulated by NAc Crh-
Cre1 rats and CeA Crh-Cre1 rats in spout-touch
task but not by BNST Crh-Cre1 rats. (A) NAc
ChR2 rats self-stimulated w25–35 times on average
(n = 5 female, n = 2 male), whereas NAc eYFP control
rats (n = 4) touched both spouts equally about 15
times. (B) CeA ChR2 rats similarly self-stimulated
(n = 2 female, n = 5 male), whereas eYFP control
rats did not (n = 4). (C) BNST ChR2 rats failed to self-
stimulate for laser in BNST corticotropin-releasing
factor–containing neurons (n = 3 female, n = 5
male). See Figures S4 and S6D. Means 6 SEM, and
individual scores shown; *p , .05; **p , .01. BNST,
bed nucleus of stria terminalis; ChR2,
channelrhodopsin-2; CeA, central nucleus of amyg-
dala; CeL, lateral central amygdala; dlBNST, dorso-
lateral BNST; eYFP, enhanced yellow fluorescent
protein; NAc, nucleus accumbens.
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Positive NAc and CeA Versus Negative BNST:
Anatomical Differences in Motivational Valence

Why did CRF-containing neuron activations have positively
valenced effects in the NAc and CeA but negatively valenced
effects in the BNST? The NAc and CeA are both striatal-level
structures in cortico-striatal-pallidal macrosystem frameworks
of telencephalon organization, having neuronal, connectivity,
neurochemical, and embryological features shared with the
neostriatum (65–67). For example, the CeA and NAc contain
mostly GABAergic neurons that receive descending cortical-
type glutamatergic inputs and ascending mesotelencephalic
dopaminergic inputs, and both send GABAergic outputs to
pallidal-level structures of the BNST or VP (65–68). In the same
frameworks, the BNST is a pallidal-level structure with
descending outputs to the hypothalamus and brainstem, plus
ascending re-entrant projections back to thalamo-cortico-
striatal-pallidal loops (22–24,65–68).

Hypothesized Roles of CRF-Containing Systems in
Addiction

Traditionally, CRF-containing neurons have been hypothe-
sized to generate aversive states such as anxiety and drug
withdrawal, although CRF systems also have wider roles in
affective appraisals of incentives that mobilize motivational
states (9–11). Our study helps put this in perspective.

Regarding the role of CRF in anxiety and addiction, the
allostatic theory of addiction posits that CRF-containing
neuronal activation in CeA and BNST components of
extended amygdala cause aversive drug withdrawal, which is
hypothesized to promote relapse through efforts to hedonically
self-medicate via consumption of drug rewards (27–29,32–34).

Our results call into question some of these assumptions.
Indeed, the hypothesis that CRF-containing neurons in CeA
and BNST (i.e., extended amygdala) necessarily generate
negatively valenced states may not apply to CeA. Instead, our
results indicate that CRF-expressing neuronal activation in
both the CeA and NAc increases reward pursuit and produces
positively valenced incentive states that rats actively worked to
induce. Conversely, in partial support of the allostatic model,
1172 Biological Psychiatry June 15, 2021; 89:1162–1175 www.sobp.o
BNST CRF-containing neural activation did cause aversive
motivational states. However, the aversive state induced by
stimulating BNST CRF-expressing neurons failed to increase
reward seeking, instead suppressing sucrose pursuit.

This suggests that hedonic self-medication of aversion may
not be the primary mechanism by which CRF-containing
neurons promote reward pursuit and consumption for any of
these structures. Instead, CRF-expressing neurons in the CeA
and NAc amplify “wanting” to pursue and consume rewards
without aversive states, whereas BNST CRF-expressing
neuronal excitation may actually impede reward pursuit and
consumption. This may be why drug withdrawal is not as
effective for reinstatement of drug taking as stress or drug
priming (25,37–39). Although brainwide CRF activation may
cause aversive withdrawal states through BNST CRF-
containing neurons, our results suggest that any accompa-
nying increases in reward pursuit or addictive relapse might
predominantly be due to coactivation of CRF incentive moti-
vation systems in the NAc and CeA.

Valence Flips

Motivational valence induced by CeA optogenetic stimulation
can switch depending on environmental situation, and there-
fore the valence of our CRF-containing neuron stimulation
could potentially switch in certain circumstances (14,45). If so,
CRF systems could be quite labile in their functional role in
motivated behaviors depending on context and need, which
deserves further investigation.

Clinical Implications

Activation of CRF systems during stress or emotional excite-
ment may promote relapse in addiction, binge eating, and
other excessive consumption. The dominant perspective relied
solely on the postulated aversiveness of CRF-expressing
neural activation. However, our results indicate that incentive
motivation roles of CRF-containing neurons in the NAc and
CeA predominate under tested conditions and promote
intense reward pursuit without aversive distress (12–14). This
could explain why even positively valenced stressors (e.g., new
rg/journal
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Figure 9. Place-based self-stimulation and place-based aversion
following CRF-containing neuron stimulation. (A) The NAc supported ChR2
place-based laser self-stimulation of CRF-containing neurons. NAc ChR2
rats (n = 2 female, n = 6 male) spent more time in the laser-delivering
chamber than in the no-laser chamber, more time in the laser-delivering
chamber than NAc eYFP control rats (n = 5), and more than they previ-
ously spent in same chamber during no-laser baseline preference tests. (B)
The CeA also supported place-based self-stimulation of CRF-containing
neurons. CeA ChR2 rats (n = 5 female, n = 3 male) spent more time in the
laser-delivering chamber than in the no-laser chamber, more time in the
laser-delivering chamber than CeA eYFP control rats (n = 5), and more than
they previously spent in identical chamber during no-laser baseline tests. (C)
Conversely, BNST produced avoidance of the laser-delivering chamber.
BNST ChR2 rats (n = 5 female, n = 5 male) spent less time in the laser-
delivering chamber than eYFP control rats (n = 5) and less time than they
spent in the same chamber during no-laser baseline tests. See Figures S5
and S6E. Mean and SEM reported; *p , .05. BNST, bed nucleus of stria
terminalis; CeA, central nucleus of amygdala; CeL, lateral central amygdala;
ChR2, channelrhodopsin-2; CRF, corticotropin-releasing factor; dlBNST,
dorsolateral BNST; eYFP, enhanced yellow fluorescent protein; NAc, nu-
cleus accumbens.
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relationships, winning the lottery) can be triggers of addictive
relapse and binge eating (69–72). Conversely, aversive moti-
vation induced by BNST CRF-containing neurons contributed
little to reward pursuit. Ultimately, CRF-containing systems
have diverse motivational roles. Further clarification of
Biological Psyc
negatively valenced versus positively valenced motivation
roles of CRF systems will be important to understand how they
promote excessive consumption in addiction and related
disorders.
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